A new dispersion-relation preserving method for integrating the classical Boussinesq equation

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The new implicit finite difference method for the solution of time fractional advection-dispersion equation

In this paper, a numerical solution of time fractional advection-dispersion equations are presented.The new implicit nite dierence methods for solving these equations are studied. We examinepractical numerical methods to solve a class of initial-boundary value fractional partial dierentialequations with variable coecients on a nite domain. Stability, consistency, and (therefore) convergenceof t...

متن کامل

Pseudospectral Method for the " Good " Boussinesq Equation

We prove the nonlinear stability and convergence of a fully discrete, pseudospectral scheme for the "good" Boussinesq equation un = -uxxxx + uxx + ("2)xx ■ Numerical comparisons with finite difference schemes are also reported.

متن کامل

Trial Equation Method for Solving the Improved Boussinesq Equation

Trial equation method is a powerful tool for obtaining exact solutions of nonlinear differential equations. In this paper, the improved Boussinesq is reduced to an ordinary differential equation under the travelling wave transformation. Trial equation method and the theory of complete discrimination system for polynomial are used to establish exact solutions of the improved Boussinesq equation.

متن کامل

On the development of a dispersion-relation-preserving dual-compact upwind scheme for convection-diffusion equation

Article history: Received 3 August 2008 Received in revised form 28 October 2008 Accepted 2 February 2009 Available online 20 February 2009

متن کامل

Energy-preserving finite volume element method for the improved Boussinesq equation

Article history: Received 2 January 2014 Received in revised form 23 March 2014 Accepted 27 March 2014 Available online 2 April 2014

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Nonlinear Science and Numerical Simulation

سال: 2017

ISSN: 1007-5704

DOI: 10.1016/j.cnsns.2016.06.025